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Abstract

During the last century, the oyster population of the Chesapeake

Bay area has diminished greatly due to overfishing, pollution and

climate change. Our Optimal Control model finds a sustainable

solution that balances oyster harvesting with the health of the pop-

ulation. We wish to find the value of our Effort (control) function

that harvests the most oysters possible without fishing the popu-

lation to extinction. We create a Hamiltonian function and apply

Bang-Bang Control in order to find a singular E∗ between 0 and

Emax such that E∗ will balance out with the natural growth rate of

the population to form a constant, stable population. Our model

uses analytical and numerical solutions to determine the optimal

sustainable population (N∗) and effort (E∗) for a Bang-Bang Con-

trol model. The analytical model also solves for times T1 and T2

at which the piecewise Heaviside effort function switches values of

E(t). In marine population study, there has not been extensive use

of mathematics, especially optimal control theory. Consequently, as

seen in our Future Work section, there is much room for expansion

upon current scholarship regarding optimal control theory. Only

by incorporating several environmental factors can one succeed in

using mathematics to develop a successful harvesting strategy.
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Chapter 1

Introduction

1.1 Background

During the last century, the oyster population of the Chesapeake Bay area has dimin-

ished greatly due to overfishing, pollution and climate change. Harvests since 1900 have

decreased by two orders of magnitude, reaching their peak in 1884 at 615,000 tons [8, 11].

In 1992 the harvests were only 12,000 tons [8].

During the latter part of the 20th century, disease, extremes of salinity, and pollution

took a toll on the oyster population throughout the Chesapeake Bay watershed. Increased

flow of sediment into the Chesapeake Bay and its tributaries has raised sediment levels

in the water, degrading the health of the oysters, lowering their fertility and decreasing

survival rate [8]. Although remarkably tolerant of silt, it should be noted that higher

concentrations of silt, clay, chalk, and Fuller’s earth have been observed to decrease egg

and larval development of the American Oyster [14]. Changes in salinity of the Bay have

also been a problem: freshwater flooding has caused 90% casualty rates in areas with low

salinity. Areas in the lower Bay with high salinity have been attacked by predators and

diseases, whose range is determined by critical isohalines [1]. Pollution has also severely

affected oysters in the James River and Rappahannock River, specifically around the
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Richmond and Hampton Roads areas [1]. Dissolved oxygen levels in the Chesapeake Bay

had been unstressed prior to human modification of surrounding land, but now are low,

affecting the oysters’ food source [11].

A shift in the manner of collecting oysters from tonging to dredging has caused a

build-up of spoil areas, where layers of dead oyster shell are deposited. The latter half

of the 20th century saw a 71% decrease in individuals living in spoil areas [14]. Another

consequence of dredge harvesting is decrease in reef height, which has been shown to

decrease the population of oysters living on said reef [8, 11].

Oysters are critical to the Bay ecosystem because of their key ability to filter the water

of their estuary, thereby removing pollutants. They consume planktons, who receive their

nutrients from nitrogen compounds (often in the form of nitrates and ammonia) and

therefore remove these nitrogen-based compounds from the water.

However, recent repopulation efforts have experienced some success. Starting in 2004,

the Army Corps of Engineers constructed oyster reefs of various heights in the Great

Wicomico river. Reefs of height 25-42 cm experienced great success, with mean oyster

density of 1000 per square meter. Their result was four times higher than those reefs of

height 8-12 cm [8], leading us to conclude that higher reefs are more resistant to turbulence

and sedimentation [8].

1.2 Model of Renewable Population and Harvesting

This paper will examine a harvesting model of oysters, considering the maturity cycle

and dynamics of the oyster population itself. Our harvesting model takes into account

an effort function, which can be thought of as how many boats are sent out to collect

oysters. The upper bound on this function is the maximum effort the harvester is capable

of applying, or the total number of boats in the fleet. Further detail regarding the effort

function can be seen in following sections.

A logistic population model is sometimes used to describe a growth and harvesting
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scenario, as seen in works by Clark [5] and Kot [9]. The logistic model dictates that

when the population becomes too large, reproduction and survival are increasing at an

unsustainable rate, thus producing a decline in population. The logistic model uses a

constant effort term, signifying a fixed harvesting effort for the duration of the time

period [7]. The harvesting term here, Ex, is the constant Effort multiplied by x, the

population variable.

dx

dt
= rx

(
1− x

K

)
− Ex. (1.1)

An alternative to a logistic constant effort model is a constant yield model. An example

of this model would be a quota system: every month a fishing company catches no more

than 100 tons of fish. A constant yield model could be a function of limited storage space

or other constraints [7]. The constant yield equation looks very similar to the logistic

model above, except the harvesting term is simply a constant, entirely determined by the

Effort function and not mathematically related at all to the population.

dx

dt
= rx

(
1− x

K

)
− E. (1.2)

In looking for a sustainable model that still harvests the maximum yield, we turn to

the constant effort model in equation (1.1). But instead of being based upon a logistic

model, our model will use a cubic growth function determined by the Allee effect.

1.3 The Allee Effect

The Allee Effect is a population dynamics model which describes the rate at which the

population will increase or decrease. Its key determining factor is population density.

Under the Allee Effect for large populations, reproduction and survival rates are inversely

proportional to increased population density. For small populations, increased reproduc-

tion and survival rates occur as population density increases [2]. An example of Allee

3



Effect population growth function is

f(N) = rN

(
N

K0

− 1

)(
1− N

K

)
, (1.3)

where the carrying capacity K is the upper bound of the population, and the minimal

sustainable population K0 is the lower bound of the population.

In his 1949 paper [2], Allee did not explicitly define the effect, but rather considered

“certain aspects of survival value”[16]. Stephens et al. define the Allee Effect as “a positive

relationship between any component of individual fitness and either numbers of density

of conspecifics”[16]. They also distinguish between component Allee effects (manifested

by a component of fitness) and demographic Allee effects (manifested at the level of total

fitness). However, they do provide for negative effects of increasing population numbers,

such as competition for food and over-crowding [16]. Because we examine the effect of

harvesting upon the total population, we are considering a demographic Allee effect.

Shi and Shivaji studied the weak Allee Effect, in which the per capita growth rate is

not as monotonically decreasing as in a logistic growth model, and the habitat is assumed

to be a heterogeneously bounded region [15]. In the strong Allee Effect, the population

exhibits a critical density below which the population decreases. For both the weak and

strong Allee effect cases, there is a “sweet spot” at which the population is neither too

small nor too big, and grows at the highest rate.

1.4 Optimal Control Theory

Optimal Control Theory describes the behavior of the underlying dynamical system (the

state variable) with respect to the control function (the effort function). For the context

of harvesting problems, Optimal Control Theory can be posed as a question: How do

we design the control function in order to achieve our desired aims? Oftentimes, this

control involves different rates of harvesting under certain conditions, determined by the

cost to perform such harvesting. Consequently, we adjust the control function in order to

4



maximize or minimize a given objective functional [10].

Our problem is a biological application of control engineering, which seeks to apply

control theory to practical systems. We change the control function in order to achieve

the desired result from the response variable. In our case, we seek a stable solution

during which we can harvest the maximum amount of oysters while still maintaining a

sustainable, healthy population.

Optimal Control Theory has wide-ranging applications. Among other uses, it can be

used to maximize commodity profit for products within a market and profits for the whole

market, minimize the negative effect of pests upon a crop, optimize the productivity of

an economy (theoretically, of course), or maximize return on investment [3, 12, 13, 17].

Correspondingly, the control function can take many different forms: loan rates and target

prices, amount and distribution method of insecticides, pattern of consumption, or time

spent by employees of an investment firm on a particular project [3, 12, 13, 17].

1.5 Review of Work for Logistic Model

Wang and Wang [18] studied the optimal harvesting strategies for a single population

model in an effort very similar to ours. They use optimal control theory to study the

harvesting problem with a logistic equation, in order to maximize the total yield or the

terminal population. The logistic model with harvesting is represented by the population

function

dx

dt
= rx

(
1− x

K

)
− E(t)x, (1.4)

and they maximize the total yield over a time period [0, T ]:

∫ T

0

E(t)x(t) dt, (1.5)
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subject to (1.4), where T is the span of time of interest and 0 ≤ E(t) ≤ Emax. Here Emax

is the maximum effort. The resulting optimal control E(t) is a Bang-Bang Control, which

simply means that the effort function E(t) is a Heaviside type function with value either

Emax, 0, or an optimal effort E∗ (singular value).

Wang and Wang [18] also calculate the switching times (between the different harvest-

ing rates) T1 and T2 by explicit formula. This is a step that we aim to duplicate in our

research for the model with strong Allee effect as well, although it may prove more diffi-

cult for us because the nonlinearity in our equation is a cubic function. T1 here denotes

the time at which E(t) reaches its singular value, and T2 denotes the time E(t) leaves

its singular value to resume harvesting at maximum capacity. For more detail on this

process, see the discussion in Chapter 2.

1.6 Summary of Work

Our Optimal Control model finds a sustainable solution that balances oyster harvesting

with the health of the population. We wish to find the value of our Effort (control) function

that harvests the most oysters possible without fishing the population to extinction.

We create a Hamiltonian function and apply the Pontryagin’s Maximum Principle, the

basic mathematical theorem in optimal control theory [10]. Our Effort function is a Bang-

Bang Control, meaning that it is a piecewise constant function where either E(t) = 0,

E(t) = Emax, or E(t) = E∗ (a singular value). Much like an on-off switch, our Effort

function is not continuous; it always takes one of three values. The goal is to find an E∗

between 0 and Emax such that E∗ will balance out with the natural growth rate of the

population to form a constant, stable population.
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Chapter 2

Mathematical Model and Analysis

2.1 Mathematical Set-up: One-Patch Model

In order to understand the dynamics of a two-patch model, we first examine the one-patch

model.

We begin with equations to model the population following sources [5, 9]. Let N(t)

represent the population of certain species; N(t) satisfies a differential equation:

dN(t)

dt
= f(N(t))− qE(t)N(t), (2.1)

where

f(N) = rN

(
N

K0

− 1

)(
1− N

K

)
. (2.2)

The initial condition of N(t) is

N(0) = N0. (2.3)

In equation (2.1), f(N) is the natural growth rate with a strong Allee effect, while

qE(t)N(t) represents the harvesting of the population. The Allee effect is determined by

the limitation of the sustainable population value to greater than K0 and less than K.We
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see that q is the harvesting ability, E(t) is the effort put into harvesting the population, r

is the intrinsic growth rate of the population, K is the carrying capacity of the population,

and K0 is the sparsity constant of the population satisfying 0 < K0 < K (the minimum

sustainable population value). Graphs of f(N) in both a non-harvesting Allee Effect

system and logistic growth model are plotted in Figure 2.1. From the Allee Effect graph,

it is clear that if N0 < K0, the solution approaches 0, but if N0 > K0 then the solution

approaches K. However, in the logistic case, a solution with N0 > 0 always approaches

K.

K0 K

0

f(N*)

Allee Effect Population Model

 

 

0 N* K
0

f(N*)

Logistic Population Model

f(N)

E*

Figure 2.1: Graph of f(N) for a population following the Allee Effect (left) and one with

logistic growth (right). For this graph, K = 20, K0 = 5, and r = 1.

In order to define the best effort function E(t), we employ dynamic optimization. Our

goal is to maximize ∫ T

0

pqE(t)N(t) dt (2.4)

subject to (2.1) and 0 ≤ E(t) ≤ Emax, where Emax is the maximum possible harvesting

effort, p is the value per unit harvested and T is the total time of interest. Through this

process, we define a Hamiltonian function

H(N(t), E(t), λ(t)) = pqE(t)N(t) + λ(t)[f(N(t))− qE(t)N(t)], (2.5)

8



where λ(t) is a scalar function of t. The Hamiltonian can be rewritten as

H(N(t), E(t), λ(t)) = [p− λ(t)]qE(t)N(t) + λ(t)f(N(t)). (2.6)

By Pontryagin’s Maximum Principle [9, page 243], we can conclude that the following

equations are satisfied by the optimal control E(t) and corresponding N(t) and λ(t):



dN

dt
=
∂H

∂λ
= f(N)− qEN,

dλ

dt
= −∂H

∂N
= −q(p− λ)E − λf ′(N),

N(0) = N0, λ(T ) = 0.

(2.7)

In the Hamiltonian (2.6), we can consider N(t) a known quantity because it is our

state variable, and focus our energies on the control function E(t). Thus we treat N(t)

as a constant, and consider maximizing H(t) with a given λ(t). Then E(t) has to satisfy

E(t) =


Emax, λ(t) < p,

E∗, λ(t) = p,

0, λ(t) > p.

(2.8)

where E∗ < Emax is to be specified. This E∗ is the optimal effort value, which is the

maximum sustainable effort value that does not drive the population to extinction. Such

a piecewise constant effort function is called a bang-bang control (see Fig. 2.2). In a

bang-bang control situation, E∗ is called a singular value.

In order to obtain E∗, we examine the situation in which λ(0) = p. If λ(t) = p over

an interval,
dλ

dt
becomes zero, as does the term −q(p−λ)E. So, we know (because λ = p)

that f ′(N) must equal zero as well. Therefore, the
dN

dt
term of equation (2.7) is zero.

Hence, we can obtain an N∗ by solving f ′(N∗) = 0. Notice that for the strong Allee

effect f(N), there are two N -values such that f ′(N) = 0. But the smaller one satisfies

f(N) < 0, which will drive the population to extinction because it is an unstable solution.
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0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

Figure 2.2: A Bang-Bang Control E(t) with Emax = 10 and E∗ = 5.

Hence we choose the larger one. Once we have N∗, we obtain E∗ by solving the remaining

parts of equation (2.7) for E:

E∗ =
f(N∗)

qN∗
.

We first solve for N∗.

0 = f ′(N) =
r

KK0

(−3N2 + 2(K +K0)N −K0K), (2.9)

0 = −3N2 + 2(K +K0)N −K0K. (2.10)

Now we apply the quadratic formula to obtain:

N =
2(K +K0)±

√
4(K +K0)2 − 12KK0

6
, (2.11)

N =
K +K0 ±

√
K2 −KK0 +K2

0

3
. (2.12)
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We know we must pick the root of this equation with the positive sign, because the root

with the negative sign drives the solution to zero. Hence

N∗ =
K +K0 +

√
K2 −KK0 +K2

0

3
. (2.13)

Now that we know N∗, we can solve for E∗:

E∗ =
f(N∗)

qN∗
=

r

qKK0

[
−(N∗)2 + (K +K0)N

∗ −K0K
]
. (2.14)

But we know that

(N∗)2 =
2(K +K0)N

∗ −K0K

3
. (2.15)

So,

E∗ =
r

qKK0

[(
−2(K +K0)N

∗ −K0K

3

)
+ (K +K0)N

∗ −K0K

]
, (2.16)

E∗ =
r

qKK0

[
1

3
(K +K0)N

∗ − 2

3
K0K

]
, (2.17)

E∗ =
r

qKK0

[
1

9
(K +K0)

(
K +K0 +

√
K2 −KK0 +K2

)
− 2

3
K0K

]
. (2.18)

With the values r = 1, q = 1, K0 = 5 and K = 20 in equations (2.13) and (2.18),

we obtain the values N∗ = 14.3426 and E∗ = 0.52855. Under this particular example of

harvesting effort, the solution of the state equation would look like Figure 2.3, in which we

take E(t) = E∗ = 0.52855. Solving (1−N/K)(N/K0 − 1)−E∗ = 0, we obtain two roots

N1 = 10.6574 and N2 = 14.3426, which will be the asymptotes of solutions depending

upon initial values. If N0 > N1, the solution for the system would follow the top trend

line to approach N2, whereas if 0 < N0 < N1, the solution would trend to zero. Here the

singular value N∗ is same as the upper equilibrium N2, which occurs because q = 1.
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Figure 2.3: Direction field showing solutions for possible initial values N0. Here the

horizontal axis is time t, and the vertical axis is N(t). We use r = 1, q = 1, K0 = 5,

K = 20 and E = 0.52855.

The effort function for the system is a piecewise constant function with values 0,

Emax, or E∗; possible cases for the graph of E(t) are displayed in Figures 2.4 and 2.5. In

Figure 2.4, the initial condition N0 is less than the optimal sustainable population level

N∗, so the initial harvesting effort is set to zero in order to allow the population to grow

to reach N∗. In Figure 2.5, N0 is greater than N∗, allowing the initial harvesting level

to be E(t) = Emax in order to reduce the population to sustainable level N∗. However,

to determine more precisely when to switch to a particular value of E(t), we explicitly

construct the optimal solution for the system in Section 2.2. We will also solve specifically

for the state-switching times T1 and T2.
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Figure 2.4: A possible E(t) over time for N0 < N∗.

t1 t2

0

E*

Emax

time

to
ta

l 
e

ff
o

rt

Figure 2.5: A possible E(t) over time for N0 > N∗.
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2.2 Optimal Solution

From the bang-bang control theory, for a large T , the optimal solution may take two

forms.

2.2.1 Case 1: K0 < N0 < N∗

In order to find the optimal solution of this problem, we must solve the population equa-

tion. However, we must consider two cases: K0 < N0 < N∗ and N0 > N∗. We first tackle

K0 < N0 < N∗. In this case we first set the effort to E = 0 so the population can recover

to the level of singular value E∗. We integrate the differential equation in this case:

dN

dt
= rN

(
N

K0

− 1

)(
1− N

K

)
, (2.19)

∫
dN

N(K −N)(N −K0)
=

∫
r

KK0

dt, (2.20)

∫ (
1

K0(K −K0)

1

N −K0

− 1

K(K −K0)

1

N −K
− 1

KK0N

)
dN =

∫
r

KK0

dt, (2.21)

ln |N −K0|k − ln |N −K|K0 − (K −K0) ln(N)K−K0 = r(K −K0)t+ C, (2.22)

|N −K0|K

|N −K|K0NK−K0
= Cer(K−K0)t. (2.23)

From N(0) = N0, we have

|N0 −K0|K

|N0 −K|K0NK−K0
0

= C. (2.24)

This gives the final equation, which allows us to later solve for T1:
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|N −K0|K

|N −K|K0NK−K0
=

|N0 −K0|K

|N0 −K|K0NK−K0
0

er(K−K0)t. (2.25)

Solving for T1 we obtain:

ln

(
|N∗ −K0|K

|N∗ −K|K0(N∗)K−K0

)
= ln

(
|N0 −K0|K

|N0 −K|K0NK−K0
0

)
+ r(K −K0)T1, (2.26)

T1 =
1

r(K −K0)

(
ln

(
|N∗ −K0|K

|N∗ −K|K0(N∗)K−K0

)
− ln

(
|N0 −K0|K

|N0 −K|K0NK−K0
0

))
, (2.27)

and, finally,

T1(N0) =
1

r(K −K0)

(
ln

(
|N∗ −K0|K

|N∗ −K|K0(N∗)K−K0
∗ |N0 −K|K0NK−K0

0

|N0 −K0|K

))
. (2.28)

A graph of T1(N0) is given in Figure 2.6. Biologically, T1(N0) in equation (2.28) gives

a recovery time for the fishery from a lower stock level to an optimal stock level N∗, which

maximizes the harvest. Clearly this recovery time is longer when N0 is farther from N∗.

In this case, when N0 < N∗, the time T1 is a “waiting time” for the fisherman before he

can begin harvesting.

2.2.2 Case 2: N0 > N∗

Next, we consider the case where the initial population value, N0, is greater than N∗. If

this is the case, then our prior formulas do not apply because they lack a harvesting term.

The bang-bang control suggests that a maximal harvesting effort Emax is taken until N(t)

reaches N∗. Hence we consider the differential equation

dN

dt
= rN

(
N

K0

− 1

)(
1− N

K

)
− EmaxN. (2.29)

Integrating equation (2.29) we obtain
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Figure 2.6: Values for T1 for various values of N0, where r = 1, N∗ = 14.3426, K0 = 5

and K = 20.

∫
dN

N(K −N)(N −K0)− EmaxKK0N
=

∫
r

KK0

dt. (2.30)

Here, to reduce the complexity of the equations, we define variable A = EmaxKK0.

Employing the method of partial fractions, we have

∫
a

N
dN +

∫
bN + c

(K −N)(N −K0)− A
dN =

∫
r

KK0

dt. (2.31)

The quadratic form (K−N)(N−K0)−A has no real roots because of the choice of Emax.

We now solve for the coefficients a, b and c:

a(−N2 + (KK0)N −KK0 − A) + bN2 + cN = 1. (2.32)

Thus

−a+ b = 0,

a(K +K0) + c = 0,

−a(KK0 + A) = 1,

(2.33)
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and we obtain the values

a =
−1

KK0 + A
,

b =
1

KK0 + A
,

c =
K +K0

KK0 + A
.

(2.34)

We now must complete the square of the denominator of this integral in order to

integrate it:

∫
a

N
dN +

∫
bN + c

(N − K+K0

2
)2 +KK0 + A− (K+K0)2

4

dN =

∫
r

KK0

dt, (2.35)

∫
a

N
dN +

∫
bN + c(

N − K+K0

2

)2
+KK0 + A− (K+K0)2

4

dN =

∫
r

KK0

dt, (2.36)

∫
a

N
dN +

∫
b(N − K+K0

2
) + c+ b(K+K0)

2(
N − K+K0

2

)2
+ A− (K−K0)2

4

dN =

∫
r

KK0

dt. (2.37)

The next step is another change of variable, defining W = N − K+K0

2
and A2

1 = A −

(K−K0

2
)2. Then, the above integral becomes

∫
a

N
dN +

∫
bW

W 2 + A2
1

dW −
∫
c+ b(K+K0)

2

W 2 + A2
1

dW =

∫
r

KK0

dt. (2.38)

Now the integration can be done, so we have

a lnN − b

2
ln

(
W 2 + A−

(
KK0

2

)2
)
−
c+ b(K+K0)

2

A1

tan−1
W

A1

=
r

KK0

t+ C. (2.39)
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Substituting the original variables back into the equation:

− 1

KK0(1 + qEmax)
lnN

− 1

2KK0(1 + qEmaxKK0)
ln
(
N2 − (K0 +K)N +KK0(1 + qEmax)

)

−

K +K0

KK0(1 + qEmax)
+

K +K0

2KK0(1 + qEmax)√
qEmaxKK0 − (K−K0

2
)2

tan−1

 N − K+K0

2√
qEmaxKK0 − (K−K0

2
)2


=

r

KK0

t+ C.

(2.40)

Multiplying both sides of the equation by −KK0(1 + qEmax), we obtain

lnN +
1

2
ln
(
N2 − (K0 +K)N +KK0 + qEmaxKK0

)
+

3(K +K0)

2
√
qEmaxKK0 − (K−K0

2
)2

tan−1

 N − K+K0

2√
qEmaxKK0 − (K−K0

2
)2

 = −rt(1 + qEmax) + C.

(2.41)

Now, we set t = 0 and N(0) = N0 to solve for the constant C.

C = lnN0 +
1

2
ln
(
N2

0 − (K0 +K)N0 +KK0 + qEmaxKK0

)
+

3(K +K0)

2
√
qEmaxKK0 − (K−K0

2
)2

tan−1

 N0 − K+K0

2√
qEmaxKK0 − (K−K0

2
)2

 .
(2.42)

When t = T1, N = N∗, so we reach a formula for T1 for the case of N0 > N∗:
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T1(N0) =
−1

r(1 + qEmaxKK0)

[
lnN∗ +

1

2
ln
(
(N∗)2 − (K0 +K)N +KK0 + qEmaxKK0

)
+

3(K +K0)

2
√
qEmaxKK0 − (K−K0

2
)2

tan−1

 N∗ − K+K0

2√
qEmaxKK0 − (K−K0

2
)2


− lnN0 +

1

2
ln
(
N2

0 − (K0 +K)N0 +KK0 + qEmaxKK0

)
+

3(K +K0)

2
√
qEmaxKK0 − (K−K0

2
)2

tan−1

 N0 − K+K0

2√
qEmaxKK0 − (K−K0

2
)2

].
(2.43)

Again, a graph of T1(N0) is shown in Figure 2.6. One can see that T1(N0) for N0 > N∗

is almost linear while T1(N0) for K0 < N0 < N∗ has a vertical asymptote at N = K0.

Biologically, the T1(N0) shows the maximal time length that maximum harvesting is

allowed if initially the oyster stock is abundant, while refraining from driving the stock

to a dangerously low state. Hence this T1 represents a “bountiful harvest time” for

the fisherman during which he does not need to worry about the sustainability of the

population.

2.2.3 Solving for T2

T2 is defined as the time at which the harvesting effort changes from E∗ back to Emax,

and remains at Emax until the end of time T . When solving for T2, we must include

the equation for λ(t) because of the transversality condition of Pontryagin’s Maximum

Principle: λ(T ) = 0. Hence we consider the following differential equations:

dN

dt
= rN

(
N

K0

− 1

)(
1− N

K

)
− qEmaxN, (2.44)

dλ

dt
= −q(p− λ)Emax − λ

r

KK0

(−3N2 + 2N(K +K0)−KK0), (2.45)
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with initial and terminal conditions


N(T2) = N∗,

λ(T2) = p,

λ(T ) = 0.

(2.46)

The equation of N is solved by equations (2.41) and (2.42), with the one exception

that in equation (2.42), N0 is replaced by N∗, to form the following two equations:

lnN +
1

2
ln
(
N2 − (K0 +K)N +KK0 + qEmaxKK0

)
+

3(K +K0)

2
√
qEmaxKK0 − (K−K0

2
)2

tan−1

 N − K+K0

2√
qEmaxKK0 − (K−K0

2
)2

 = −rt(1 + qEmax) + C,

(2.47)

C = lnN∗ +
1

2
ln
(
(N∗)2 − (K0 +K)N∗ +KK0 + qEmaxKK0

)
+

3(K +K0)

2
√
qEmaxKK0 − (K−K0

2
)2

tan−1

 N∗ − K+K0

2√
qEmaxKK0 − (K−K0

2
)2

 .
(2.48)

We then substitute this expression of N into equation (2.45), which is a linear dif-

ferential equation. An analytical solution is possible, but due to the incredibly complex

nature of this calculation we will not include it here. However, we are able to solve for

T2 using a numerical method to solve the equation of λ(t). Biologically during the final

period [T2, T ], fishermen do not pay attention to the population level, but only try to

maximize the total harvesting. This is because they only try to maximize the harvesting

for a finite time period [0, T ], not beyond T . So in reality, this T2 is not so important: we

really should set T =∞ so the ecosystem can be in a healthy state forever.
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2.2.4 Summary of Optimal Solution

In summary, in order to find T1, there are two cases. If K0 < N0 < N∗, then we use

equation (2.28), when N = N∗. If N0 > N∗, we use equation (2.47).

In Figure 2.7 and Figure 2.8, the graphs of the effort, population, and lambda functions

for the entire range [0, T ] are plotted using Matlab simulation.. The graphs for N0 > N∗

is shown in Fig. 2.7, and the graphs for K0 < N0 < N∗ is shown in Fig. 2.8. Both figures

use parameters K0 = 5, K = 20, r = 1, q = 1, p = 0.5, and T = 3.
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Figure 2.7: Graphs of effort, population, and lambda for time T and N0 > N∗. Values

for the parameters are N0 = 30, λ0 = λ(0) = 0.3165, and Emax = 5. The changes in E(t)

take place at T1 = 0.1399 and T2 = 2.5502.
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Figure 2.8: Graphs of effort, population, and lambda for time T and N0 < N∗. Values

for the parameters are N0 = 10, λ0 = λ(0) = 0.758, and Emax = 5. The changes in E(t)

take place at T1 = 0.6628 and T2 = 2.5502.

See Section 5.1 for our One Patch Program.

2.3 Two-Patch Model

The obvious extension of the one-patch model described above is a two-patch model

consisting of two models that exhibit the same behavior. We can begin the same process

as above, and the populations in the two patches satisfy:

dN1

dt
= f(N1(t))− qE1(t)N1(t), (2.49)
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dN2

dt
= f(N2(t))− qE2(t)N2(t), (2.50)

N1(0) = N10,

N2(0) = N20,

(2.51)

where:

f(Ni) = rNi

(
Ni

K0

− 1

)(
1− Ni

K

)
. (2.52)

So, we must maximize the following integral:

∫ T

0

pq[E1(t)N1(t) + E2(t)N2(t)] dt, (2.53)

where 0 ≤ E1 ≤ Emax and 0 ≤ E2 ≤ Emax.

The integral is optimized subject to equations (2.49) and (2.50). We then repeat the

process of constructing the Hamiltonian:

H = pq(E1N1 + E2N2) + λ1(t)[f(N1)− qE1N1] + λ2(t)[f(N2)− qE2N2]. (2.54)

By Pontryagin’s Maximum Principle, we obtain the system of equations



dN1

dt
= f(N1)− qE1N1,

dN2

dt
= f(N2)− qE2N2,

dλ1
dt

=
−∂H
∂N1

= −pqE1 − λ1[f ′(N1)− qE1],

dλ2
dt

=
−∂H
∂N2

= −pqE2 − λ2[f ′(N1)− qE2],

N1(0) = N10,

N2(0) = N20,

λ1(T ) = 0,

λ2(T ) = 0.

(2.55)
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Equation (2.54) can be re-arranged into the following version of the Hamiltonian:

H = [p− λ1(t)]qE1N1 + [p− λ2(t)]qE2N2 + λ1f(N1) + λ2f(N2). (2.56)

According to equation (2.56), we can again hypothesize the three possible ranges for Ei(t):

Ei(t) =


Emax, λi(t) < p,

E∗, λi(t) = p,

0, λi(t) > p.

(2.57)

Because of the variation in the values of λi(t), there are several options for each effort

function Ei(t). Figure 2.9, Figure 2.10, and Figure 2.11 below are just three of the four

possible scenarios, based upon independent Ei(t). I have not included the graph for the

case in which E10 < E∗1 and E20 > E∗2 .

In order to analyze the independently-harvested two-patch scenario, we use largely

the same process as the one-patch scenario. We can apply Pontryagin’s Maximum Prin-

ciple and analyze the Hamiltonian in the same manner, and derive the same relationship

between p, λ, and E(t). More intricate scenarios, such as dependent effort functions and

dispersion between patches, present intriguing projects to consider for future work.
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Figure 2.9: E(t) while using Bang-Bang Control, E10 > E∗1 , E20 < E∗2 .
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Figure 2.10: E(t) while using Bang-Bang Control, E10 < E∗1 , E20 < E∗2 .
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Figure 2.11: E(t) while using Bang-Bang Control, E10 > E∗1 , E20 > E∗2 .
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Chapter 3

Numerical Simulations

3.1 Review of the Forward-Backward Sweeping Al-

gorithm

The Forward-Backward Sweeping Algorithm is a numerical method intended to generate

a very close approximation to the analytical solution of our model. It is an example of a

block Gauss-Seidel fixed-point iteration.

We must maximize ∫ T

0

pqE(t)N(t) dt (3.1)

subject to
dN

dt
= f(N(t))− qE(t)N(t), (3.2)

and 0 ≤ E(t) ≤ Emax. As we saw in Section 2.1, the solution to the above optimal control

problem must also satisfy the equations following below [10]:

dN

dt
=
∂H

∂λ
= f(N)− qEN, N(0) = N0, (3.3)

dλ

dt
= −∂H

∂N
= −q(p− λ)E − λf ′(N), λ(T ) = 0, (3.4)
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0 =
∂H

∂E
= (p− λ(t))qN (3.5)

The following steps are required to execute this method [10]:

Step 1. Make an initial guess for E(t) over the interval [0, T ].

Step 2. Using the initial condition N(0) = N0 and the values for E(t), solve N(t) forward

in time according to its differential equation in the optimality system.

Step 3. Using the transversality condition λ(T ) = 0 and the values for E(t) and N(t),

solve λ(t) backward in time according to its differential equation in the optimality system.

Step 4. Update E(t) by entering the new N(t) and λ(t) values into the characterization

of the optimal control.

Step 5. Check convergence. If the values of the variables in this iteration and the last

iteration are negligibly close, output the current values as solutions. If the values are not

close, return to Step 2.

3.2 Numerical Results for the One-Patch Model

The intent of the numerical simulation is to provide a visual representation of the ideal

analytical solution to our equations. We want the graphs of our analytical solution to

match those of the numerical solution, so as to confirm that our derivation of equations,

programming, and graphical representations are as accurate as possible. The numerical

simulation is yet another way of confirming the exactitude of our analysis in order to

make factual conclusions.

For our particular case, we ran the numerical simulation with the following values:

K0 = 5

K = 20

r = 1

q = 1
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Figure 3.1: Forward-Backward Sweeping Runge-Kutta Algorithm K0 = 5, K = 20, r =

1, q = 1, p = 0.5, N0 = 10, Emax = 0.27907, T = 10.

p = 0.5

N0 = 10

Emax = 2

T = 10.

Equations (3.1) and (3.2) were discretized using a fourth order explicit Runge-Kutta

simulation. See Section 5.2 for our code, which ran many iterations of the simulation in

order to produce and graph results. The graph of our numerical approximation of the

equations is displayed below.

The sweeping program works for the program in Lenhart’s book [10], but when adapt-

ing the program to our problem there is a convergence issue. The Forward-Backward

Sweeping Runge-Kutta approximation is not guaranteed to converge for all systems, and
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we found out through much trial and error that our system (K0 = 5, K = 20, r = 1, q =

1, p = 0.5, N0 = 10, T = 10) only converges when 0 ≤ Emax ≤ 0.27907. When the afore-

mentioned parameters are used, the algorithm converges, but if the values are adjusted

just slightly the algorithm no longer converges.

It is possible that this constant, 0.27907, is some combination of the rest of the pa-

rameters and forms an asymptote. As soon as the value for Emax becomes greater than

0.27907, the simulation no longer converges; instead, it diverges to infinity. By looking

at the graph of the values, we see that the graph of E(t) does not exhibit the Heaviside

characteristics of a typical bang-bang control variable. Instead, E(t) is constant for the

duration of time T . According to Equations (2.13) and (2.17), we can calculate that, with

the above parameters, E∗ = 0.5285. Because Emax = 0.27907 is smaller than E∗ = 0.5285,

logic of the bang-bang Control dictates that there is no need to switch to the larger value

E∗ since one could maintain harvesting at the maximum value. Consequently, the effort

function is displayed as constant, rather than the piecewise heaviside function in previous

situations.

The initial and terminal conditions of λ(t) are satisfied in the above graph as well.

It is apparent that λ(0) = 0.5, which is the parameter as entered in the program, and

λ(T ) = 0 as declared in the terminality condition of Pontryagin’s Maximum Principle in

equation (2.7). Also, the behavior of the population N(t) corresponds to the constancy

of Emax, and continues to increase at a decreasing rate until time T .
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Chapter 4

Conclusions

4.1 Limitations

Our model has several limitations. The first concerns the robustness of our model. Our

system of equations deals with a very specific set of circumstances depicted by solvable

integrals, which only occur in nature with very limited frequency. If some external fac-

tors lead to a specific population not exhibiting the Allee Effect but which was instead

described by a Logistic Growth, Beverton-Holt, or Ricker model, our system of equations

and solutions would not apply. Instead, the same process would have to be repeated with

the population equation of the pertinent model.

Another application of optimal control theory, instead of maximizing harvesting, in-

cludes economic factors allowing for maximization of profit. Our model does not include

the necessary terms to address this problem. However, the modification to the equations

is not difficult [9]:

max

0 ≤ E(t) ≤ Emax

∫ T

0

e−δtE(t)N(t)dt+ pe−δtN(t), (4.1)

subject to
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dN

dt
= rN

(
N

K0

− 1

)(
1− N

K

)
− EN. (4.2)

Here δ is the rate at which the economic rent is discounted. The inclusion of this term

isn’t strictly for the maximization of profit; it indicates that the harvester values the

present harvest over future harvest. We can also incorporate an operating cost c:

max

0 ≤ E(t) ≤ Emax

∫ T

0

e−δt[pqN(t)− c]E(t)dt, (4.3)

subject to

dN

dt
= f(N)− qEN. (4.4)

The inclusion of these possible modifications that address shortfalls of our model could

provide a foundation for future work.

4.2 Future Work

In addition to the economic factors discussed above, several possible paths for future work

revolve around the two patch construction. Time restrictions dictated that our work on

the two-patch model not foray into co-dependent patches. However, this topic appears to

be quite interesting and complex, with great applications in marine conservation efforts.

There are two main ways in which oyster patches can be co-dependent:

1. The harvester shares the same harvesting resources between the two patches.

2. There is dispersion between the two oyster patches.

The subsequent sections will briefly analyze potential future work for each of these

topics.
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4.2.1 Dependent Effort Functions Ei(t)

If the two patches are harvested by the same harvester, then the effort function is greatly

affected. Instead of each Ei(t) being independent, they are interrelated, for example of

the manner

0 ≤ E1 + E2 ≤ Emax. (4.5)

This bound is realistic because the combined effort of the two patches cannot exceed

the total effort available to the harvester. For example, consider if your harvesting com-

pany has 100 boats available to harvest. If there is only one patch to be harvested, all

boats can be devoted to that one patch. But if there are multiple patches, those 100 boats

must be spread out among all the patches. Thus the effort devoted to harvesting each

patch is related to the effort devoted to other patches.

This interdependence of the Ei functions presents an issue. The solution of our ideal

E∗ is no longer a simple re-arrangement of an equation. Now we must take into account

each possible relationship the two effort functions could have to each other.

Consequently, the effort functions available to each patch would be given by the fol-

lowing:

E1 = Emax − E2,

E2 = Emax − E1.

(4.6)

So, we have three possibilities for each λ1 and λ2:
λi(0) > p,

λi(0) = p,

λi(0) < p.

The accompanying Heaviside effort Function is:
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Ei(t) =


Emax, λi(t) < p,

E∗ = f(NMSY )
qNMSY

, λi(t) = p,

0, λi(t) > p.

(4.7)

In this case, the manner in which the harvester reacts to initial conditions Ni0 > N∗i

is not so straightforward as in the one patch case. The harvester must understand the

relationship between E1 and E2 in order to know how to reduce the populations to N∗1

and N∗2 as quickly as possible. There are many possibilities for how the harvester could

do this: for example, he could harvest them both with equal intensity (E1 = E2 = 1
2
Emax)

or harvest E1 twice as intensely as E2 (E1 = 2E2 = 2
3
Emax).

The next step is to write the Hamiltonian in terms of either E1 or E2 alone by making

the substitution

E2 = Emax − E1. (4.8)

We then substitute equation (4.8) into the Hamiltonian (2.56) to obtain a new Hamil-

tonian:

H = p1q1E1N1 +pq2N2(Emax−E1)+λ1(f(N1)−q1E1N1)+λ2(f(N2)−q2N2(Emax−E1)),

(4.9)

which simplifies to:

H = E1 [(p1 − λ1)q1N1 − (p− λ2)q2N2] +Emaxq2N2(p−λ2) +λ1f(N1) +λ2f(N2). (4.10)

We know that both E1 and E2 are independently constrained by Emax. Therefore,

upon our substitution of E2 = E1 − Emax we implement a Bang-Bang Control.

For this equation, we have several possibilities for λi:
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Figure 4.1: E(t) while using Bang-Bang Control to optimize the two-patch model.



λ1 > p, λ2 < p; E1 = 0, E2 = Emax,

λ1 > p, λ2 > p; E1 = 0, E2 = 0,

λ1 < p, λ2 > p; E1 = Emax, E2 = 0,

λ1 < p, λ2 < p; E1 + E2 = Emax.

(4.11)

We can exclude the second case, as it does not provide any possibility of improving our

model, since neither E1 = 0 nor E2 = 0 represent positive harvesting.

Figure 4.1 shows the respective functions of the population N1 and N2 as E1 and E2

vary over time. This example uses the Bang-Bang Control model: first E1 = Emax and

E2 = 0; upon E1 reaching E∗1 , then E1 = 0 and E2 = Emax until E2 = E∗2 .

Further analysis is required to determine if the Bang-Bang Control is the optimal
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method for harvesting two oyster patches - the values of many parameters must be taken

into account. For example, the above situation could be reversed: E2 = Emax and then

E1 = Emax. Or, E1 = E2 = 1
2
Emax, or E1 = 1

3
Emax and E2 = 2

3
Emax, or any other

combination.

4.2.2 Dispersion Between Two Patches

Dispersion between two patches would make the model more applicable to real-life sce-

narios. If there exist two oyster patches, Patch A upstream from Patch B, then the flow

of the larvae from Patch A downstream to Patch B would be modeled by a dispersion

term. Upon reaching Patch B, some larvae would presumably find an appropriate site to

settle as spat, adding to the height and health of Patch B.

Dispersion is particularly applicable in the oyster repopulation efforts occurring in the

Chesapeake Bay Basin at the moment. Modeling the effectiveness of different types of

patch placement could lead to new successes for these repopulation efforts and increase

the health of the Crassostrea virginica in the Chesapeake Bay Basin. The equations for

this sort of model would take the following form:


dN1

dt
= f(N1)− qE1N1 − d(N1 −N2),

dN2

dt
= f(N2)− qE2N2 − d(N2 −N1),

(4.12)

where d(Ni − Nj) is the dispersion term mentioned above. If Patch A is upstream from

Patch B, it would be logical that d(NA − NB) < 0 and d(NB − NA) > 0. However, the

addition of this term would also significantly complicate the analytical calculations from

the previous chapters.
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4.3 Conclusions

Our model has solved for analytical and numerical solutions of optimal control of oyster

harvesting for populations demonstrating the Allee Effect. We have solved for equations

to determine the optimal sustainable population (N∗) and effort (E∗) for a bang-bang

control model. The analytical model also solves for times T1 and T2 at which the piecewise

Heaviside effort function is switched to E∗ and from E∗ to Emax, respectively. The method

of solving for T1 depends on the initial value of N0 = N(0).

We have laid the groundwork for extrapolation upon our model. Future work could in-

corporate inclusion of co-dependence of multiple patches or terms for economic profit and

operational cost. This co-dependence could take the form of dependent effort functions

Ei(t) or addition of a term allowing for dispersion between multiple patches.

There is much room for expansion upon current scholarship regarding applications of

optimal control theory. Much of this possibility stems from the complexity of the inter-

related variables affecting marine life, so models will be inherently limited by the amount

of variables they can include; the most realistic models would optimize several variables

instead of the one we focused on. Only by incorporating several variables can one succeed

in using mathematics to develop a successful harvesting strategy.
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Chapter 5

Appendices

5.1 One-Patch Program

Below is the program used to graph the analytical solutions to the one patch system.

function one_patch12

%%%%%%%%%%%%%%%

% X2 = LAMBDA %

%%%%%%%%%%%%%%%

%declaration of global variables and parameters

global r; global K; global K0; global q; global p;

global N1; global E1; global Emax; global T;

global tev1; global tev2

%assigning parameters

T=3;

tspan=[0 T];
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Emax=5;

r=1; K=20; K0=5; q=1; p=0.5;

N1=(K+K0+sqrt(K^2-K*K0+K0^2))/3;

E1=(r*N1*(N1/K0-1)*(1-N1/K))/(q*N1);

%initial conditions

x0=[10,0.758];

xone=[N1,p];

xthree = x0;

%the events

options1 = odeset(’events’,@events1);

options2 = odeset(’events’,@events2);

%solving the equations

[t1,x1,tev1, xev1, ie]=ode45(@f1,tspan,x0,options1);

[t2,x2,tev2, xev2, ie]=ode45(@f2,tspan,xone,options2);

tev1

xev1

tev2

xev2

tspan2=[0 T];

[t3,x3]=ode45(@f3,tspan2,xthree);

42



t=0:0.000001:T;

if T > tev1+tev2

if x0(1) < N1

Eff=0;

elseif x0(1) >= N1

Eff=Emax;

end

Efn = Eff+heaviside(t-tev1)*(-Eff+E1)+...

heaviside(t-(T-tev2))*(Emax-E1);

elseif T<=tev1+tev2

if T<tev2

Efn=Emax;

elseif tev2<T<tev1+tev2

if x0(1)>N1

Efn=Emax;

elseif x0(1)<N1

disp(N1)

Efn=0+heaviside(t-(T-tev2))*Emax;

end

end

end

mean(q*Efn*x3(1))

t4=[tev1 T-tev2];

vecN1=zeros(size(t4)); vecN1=vecN1+N1;

vecp=zeros(size(t4)); vecp=vecp+p;
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%%%%%%%%%%%%%% GRAPHS %%%%%%%%%%%%%%%%%%%%%%

%graph of all effort together

subplot(3,1,1)

plot(t,Efn,’linewidth’,1);

axis([0 T -0.1 Emax+0.5])

set(gca,’XTick’,[tev1 T-tev2])

set(gca,’YTick’,[0 E1 Emax])

set(gca,’XTickLabel’,’t1|t2’)

set(gca,’YTickLabel’,’0|E*|Emax’)

xlabel(’time’);

ylabel(’total effort’);

%graph of population total

subplot(3,1,2)

plot(t1,x1(:,1),’linewidth’,1);

hold on

plot(t4,vecN1,’linewidth’,1);

plot(t2+(T-tev2),x2(:,1),’linewidth’,1);

axis([0 T -0.1 N1+2])

set(gca,’XTick’,[tev1 T-tev2])

set(gca,’YTick’,[0 N1])

set(gca,’XTickLabel’,’t1|t2’)

set(gca,’YTickLabel’,’0|N*’)

xlabel(’time’);

ylabel(’total population’);
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%graph of lambda in total

subplot(3,1,3)

plot(t1,x1(:,2),’linewidth’,1);

hold on

plot(t4,vecp,’linewidth’,1);

plot(t2+(T-tev2),x2(:,2),’linewidth’,1);

axis([0 T 0 1]);

set(gca,’XTick’,[tev1 T-tev2])

set(gca,’YTick’,[0 p])

set(gca,’XTickLabel’,’t1|t2’)

set(gca,’YTickLabel’,’0|p’)

xlabel(’time’);

ylabel(’total lambda’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function dxdt=f1(t,x)

if x0(1) < N1

E=0;

elseif x0(1) > N1

E=Emax;

elseif x0(1) == N1

E=Emax;

end

dxdt=[r*x(1)*(x(1)/K0-1)*(1-x(1)/K)-q*E*x(1);

-q*(p-x(2))*E-x(2)*(r/(K0*K))*(-3*(x(1))^2+2*(K0+K)*x(1)-K0*K)];
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end

function dxdt=f2(t,x)

dxdt=[r*x(1)*(x(1)/K0-1)*(1-x(1)/K)-q*Emax*x(1);

-q*(p-x(2))*Emax-x(2)*(r/(K0*K))*(-3*(x(1))^2+2*(K0+K)*x(1)-K0*K)];

end

function dxdt=f3(t,x)

if T > tev1+tev2

if x0(1) <= N1

Eff=0;

elseif x0(1) > N1

Eff=Emax;

end

Efn = Eff+heaviside(t-tev1)*(-Eff+E1)+...

heaviside(t-(T-tev2))*(Emax-E1);

elseif T<=tev1+tev2

Efn = Emax;

end

dxdt=[r*x(1)*(x(1)/K0-1)*(1-x(1)/K)-q*Efn*x(1);

-q*(p-x(2))*Efn-x(2)*(r/(K0*K))*(-3*(x(1))^2+2*(K0+K)*x(1)-K0*K)];

end

function [value,isterminal,direction] = events1(t,x)

value =x(1)-N1;

isterminal=1;

direction=0;
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end

function [value,isterminal,direction] = events2(t,x)

value =x(2);

isterminal=1;

direction=0;

end

end

5.2 Forward-Backward Sweeping Code

Below is the code for our fourth-order Runge-Kutta simulation.

function y = attempt8_code(k0,k,r,q,p,N0,Emax,T)

test = -1;

global delta r p q k0 k N0 N h h2 N1 E1

delta = 0.001;

N = 10;

t = linspace(0,T,N+1);

h = T/N;

h2 = h/2;

u = zeros(1,N+1);

x = zeros(1,N+1);

lambda = zeros(1,N+1);
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lambda(N+1)=0;

x(1) = N0;

N1=(k0+k+sqrt(k^2-k0*k+k0^2))/3;

E1=(r*N1*(N1/k0-1)*(1-N1/k))/(q*N1);

counter = 0;

while(test < 0)

disp(’in while’);

counter = counter + 1

oldu = u;

oldx = x;

oldlambda = lambda;

for i = 1:N

k1 = h*f(t(i),u(i),x(i));

k2 = h*f(t(i) + h/2, 0.5*(u(i) + u(i+1)), x(i) + k1/2);

k3 = h*f(t(i) + h/2, 0.5*(u(i) + u(i+1)), x(i) + k2/2);

k4 = h*f(t(i + 1), u(i + 1), x(i) + k3);

x(i+1) = x(i) + (1/6)*(k1 + 2*k2 + 2*k3 + k4);

end

for i = 1:N

j = N + 2 - i;

k1 = h*g(u(j), lambda(j), x(j));

k2 = h*g(0.5*(u(j) + u(j-1)), lambda(j) - k1/2, ...
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0.5*(x(j) + x(j-1)));

k3 = h*g(0.5*(u(j) + u(j-1)), lambda(j) - k2/2, ...

0.5*(x(j) + x(j-1)));

k4 = h*g(u(j - 1), lambda(j) - k3, x(j-1));

lambda(j-1) = lambda(j) - (1/6)*(k1 + 2*k2 + 2*k3 + k4);

end

u1 = zeros(1,N+1);

for i=1:N+1

%temp is partial Hamiltonian partial Effort

temp = q*(p-lambda(i))*x(i);

if(temp>1.0e-8);

u1(i) = Emax;

elseif(temp<-1.0e-8);

u1(i) = 0;

else

disp(’NOPE’)

disp(temp)

disp(x(i));

disp(lambda(i));

u1(i) = E1;

disp(lambda)

end

end

w=0.5;

u = w*u1 + (1-w)*oldu;
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temp1 = delta*sum(abs(u)) - sum(abs(oldu - u));

temp2 = delta*sum(abs(x)) - sum(abs(oldx - x));

temp3 = delta*sum(abs(lambda)) - sum(abs(oldlambda - lambda));

disp(temp1);

disp(temp2);

disp(temp3);

test = min(temp1, min(temp2, temp3))

end

disp(’out of while’);

y(1,:) = t;

y(2,:) = x;

y(3,:) = u;

y(4,:) = lambda;

end

function forward=f(t,u,x)

global delta r p q k0 k N0 N h h2 N1 E1

forward = r*x*(x/k0-1)*(1-x/k)-q*u*x;

end

function backward=g(u,lambda,x)

global delta r p q k0 k N0 N h h2 N1 E1

backward = -q*(p-lambda)*u-(lambda*r/(k*k0))*(-3*x^2+2*x*(k+k0)-k*k0);

end
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